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ABSTRACT 

 

API's are developed for different protocol layers, each with 

a specific purpose and particular hardware and software 

needs. Within the realm of the SDR there are many different 

APIs that are associated with transmitters, receivers, specific 

purpose applications for military operations or general 

research. These APIs are then implemented within a 

common SCA architecture, leading to a great advantage of 

interoperability among various radios and being platform 

independent. The standard practice of developing an API for 

an SDR is by first describing it in UML. While UML tools 

provide some methods for syntactically constraining the 

development of a specification of a system, they don't 

support the capability of verifying or enforcing the semantic 

constraints. Consequently, the semantic interpretation of the 

constraints imposed by an API is done by humans. This 

paper discusses the potential uses of languages with formal 

semantics (e.g., OWL), in addition to UML, in the 

development of the SDR API's. In particular, it investigates 

the use of the concepts from the cognitive radio ontology 

(CRO) to express a Transceiver API and then using a 

reasoner to analyze the API specification, e.g., checking its 

logical consistency and querying. This paper proposes that 

for the purpose of analyzing the specifications of API’s, 

instead of implementing each individual API in a 

programming language, the CRO could be used to formalize 

the API and then an implementation of a generic, ontology-

bound API be used. The user will thus not have to 

implement a new API in a programming language, but 

instead use this generic API for analysis and partial testing. 

However, the API might need to be eventually 

implemented, e.g., in case the generic API does not provide 

the sufficient efficiency in terms of computational 

complexity. 

 

1. INTRODUCTION 

 

Ontology defines basic terms and the relationships between 

these terms [15]. It can be used to share information 

between people and machines. It can further help us define 

the domain specific knowledge. In the Cognitive Radio 

(CR) domain, ontologies were proposed to enable Software 

Defined Radio’s (SDR) to achieve interoperability by 

exchanging knowledge regarding communication 

parameters and protocols [7].  

 

 In current practice API’s are found throughout a system 

at all levels where modules or components interface with the 

hardware and software of a SDR as shown in Figure 1.  The 

Transceiver API is one such API that uses CORBA as 

middleware. The API’s within the realm of the cognitive 

radio and the SCA are specified using UML and are then 

implemented on a need basis. The problem with this 

scenario is that in order to analyze a new proposed API, one 

has to implement it in a programming language. Moreover, 

since there are so many different API’s, it is not easy to 

analyze the relationships between the different API’s. . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Current Interaction of API to SDR 

  

     The idea proposed in this paper is to complement the 

UML capabilities by taking advantage of the existing 

generic inference tools for the purpose of analysis of new 

API’s. More specifically, the idea is to take the specification 

of an API that is described in UML and map it to OWL 

(Figure 2). By mapping the API’s UML specification to 

OWL, an application can access the system via the ontology 

API, instead of via each API individually (as shown in 

Figure 1). This will provide the analysis capabilities, e.g.,  

(1) API specifications can be checked for consistency and 

(2) the API’s can be queried via a standard query language. 
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 Figure 2: Ontology Based API Design 

 We investigate the feasibility of this approach by 

expressing (partially) the transceiver API in OWL and then 

using a reasoner to analyze the specification for consistency 

and for querying. The ultimate idea is to extend this API 

specification mapping to include all API’s so that we do not 

use a plethora of API’s but use one ontology in which all the 

API’s are expressed. Once the API specification is mapped 

and the consistency checked, querying the API specification 

can be done using SPARQL.  

 

      Classically the specifications were written using the 

Unified Modeling Language (UML). However, other 

languages could be used, too, e.g., the Specification and 

Description Language (SDL). The SDL standard as 

described by the International Telecommunication Union’s 

Z.100 [13] document describes the use of SDL as an 

unambiguous specification and description of behavior of 

telecommunication systems. The use of SDL has been 

known in the field of telecommunications for some time 

now, including the application to network management, 

communication protocols and telecommunication services. 

SDL, when used in combination with Message Sequence 

Charts (MSC), can be used to test system descriptions.  

 

 The paper is organized as follows. Section 2 is a 

literature review of the API’s that exist for the SDR and the 

description of the transceiver API. Section 3 discusses the 

mapping of the transceiver API UML specification to OWL. 

Section 3 also shows how such a specification is checked 

for consistency and how it can be queried. Section 4 gives 

the conclusion and future work to be done. 

 

2. LITERATURE REVIEW 

 

The development of API’s for the SDR has been an 

important charge for the SCA community. The needs and 

benefits of an API are twofold: 1) application portability and 

2) ease of upgrade/enhancement [4]. The number of API’s 

that are used by the Joint Tactical Radio System (JTRS) is at 

least twenty, where there is a specific API for each 

functionality associated with software radios. The JTRS 

infrastructure has 1) primitive APIs that provide messaging 

and signaling interfaces and 2) complex APIs that define 

radio devices and services. The primitive APIs include 

Device IO API, Device Packet API, Device Simple API and 

Device Message APIs. The complex APIs include Ethernet 

Device API, Serial Port API, Audio Port API, Vocoder 

Service API and Modem Hardware Abstraction Layer  

(MHAL) API [5]. There are also new API’s developed 

every day that add to this list of APIs that are used for 

communication, security and protocols. This paper provides 

a way to consolidate the different API’s by mapping them to 

the CRO. The CRO then is used, involving a reasoner, to 

issue queries regarding specific methods from the APIs and 

to analyze the API specification.  

 

    The Transceiver API is the result of work of the Wireless 

Innovation Forum’s Transceiver Subsystem Interface Task 

Force that defines the “Transceiver Facility”. The term 

“transceiver” is used to encapsulate the entire set of 

hardware and software components within a radio set 

necessary to convert a low-power RF signal to digital 

baseband on the receiver side, and reciprocally to convert 

digital baseband signals to low-power RF on the transmit 

side [8]. The transceiver subsystem derives from the 

contraction of “transmitter/receiver”; it is a part of a radio 

chain that transposes for transmission, baseband into radio 

signal and for reception, radio signal to baseband [5]. The 

transceiver subsystem is considered a part of the physical 

layer and is comprised of the modem and the antenna 

subsystem. The rationale for using such a standard based 

specification is to increase interoperability between the 

Waveform Applications and Transceiver Subsystem [5]. 

  

The formal representation of information and 

knowledge is becoming a common practice in software 

engineering. The paradigms that have emerged to support 

this representation are 1) modeling and 2) ontologies. Model 

Based Development (MBD) begun with OMG’s UML [10]. 

Ontologies were developed by the artificial intelligence 

community in the W3C’s language OWL [11]. UML, SDL 

and MSC’s can be used for modeling and representing 

communication services, however recently UML has 

dominated this field. An SDL specification can be used to 

define system behavior and can be seen as a sequence of 

responses to given stimuli [13]. SDL semantics is described 

in the Z.100 specification but the semantics is not machine 

readable in the sense that there are no formal representation 

of the semantics that is interpreted by any inference engine.  

Although the SDL semantics presented in the SDL Z.100 

document is precise, the semantics is written in natural 

language (text) and thus only human-interpretable.  To the 

best of our knowledge, a generic inference engine does not 

exist that would deduce any implicit information from an 

SDL specification. 
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     This paper talks about mapping UML to OWL and 

compares the use of these two languages for analyzing 

software defined radio APIs. It is important to compare both 

syntax and semantics of the languages. Syntax can be 

further classified into abstract syntax and concrete syntax 

and semantics can be further classified into semantic 

domain and semantic mapping [12]. A language comparison 

should take all of these into consideration. The most 

important issue in language comparison is subject and 

expressiveness.  

 

    As part of an OMG’s effort, ODM has been developed as 

a bridge for mapping UML to OWL [2]. In our mapping of 

API specifications from UML to OWL, ODM plays a very 

significant role. Note, however, that ODM provides only a 

partial mapping, not a complete mapping. The main reason 

for this partiality is that some of the features of these two 

languages are very difficult, if not impossible, to reconcile. 

This issue, however, is outside of the scope of this paper. 

 

 

3. METHODOLOGY 

 

 3.1 Mapping UML to OWL 

 

Unified Modeling Language (UML) is a language that is 

used to model application structure, behavior, architecture 

and is also used for representing business processes and data 

structures [6]. It is a standardized general-purpose modeling 

language that is controlled by the OMG. Primarily it is used 

to create visual models. UML combines data modeling, 

business modeling, component modeling and object 

modeling.  

 

Web Ontology Language (OWL) is an expressive 

language for representing and sharing ontologies over the 

web [9]. It is designed to be used by applications that 

process content rather than present information. It facilitates 

greater machine interoperability than other languages by 

providing vocabulary with formal semantics.  

 

Object Data Metamodel (ODM) is a standard from 

Object Management Group (OMG) that supports ontology 

development and conceptual modeling. In provides a 

framework for ontology creation based on the MOF (Meta 

Object Facility) and UML.  It thus offers a set of 

metamodels and mappings for bridging the worlds of 

metamodels and ontologies. ODM defines five metamodels 

and two UML profiles and a set of QVT (Query, Verify, and 

Transform) mappings; these are used to map between UML 

and OWL.  

 

There are many common features between UML 

and OWL and thus the ODM incorporates this into the 

mappings.  Consequently, UML classes are mapped to 

OWL classes, UML instances are mapped to OWL 

individuals (where the OWL individual is independent of 

the class), UML ownedAttribute and binaryAssociation are 

mapped to OWL properties, where the properties can be 

either local or global. UML subclass and generalizations are 

mapped to OWL subClassOf and subProperty. A summary 

of the mappings is shown below. 

 
Table 1: UML to OWL mapping 

UML Elements OWL Elements 

Class, property owned 

attribute, type 

Class 

Instance Individual 

ownedAttribute, 

binary association 

Property 

Subclass, generalization subClassOf, subProperty 

N-ary association, 

association class 

Class, Property 

Enumeration oneOf 

Disjoint, cover disjointWith, unionOf 

Multiplicity minCardinality 

maxCardinality 

Package Ontology 

Dependency Reserved name 

rdf:Property 
 

The table shown above shows the ODM 

specifications of the mapping between UML and OWL. All 

of the UML features considered in the scope of ODM have 

some satisfactory OWL equivalents. Some UML features 

that have no OWL equivalents are navigable, non-

navigable, derived, abstract classifier and classes as 

instances. Some OWL features that have no UML 

equivalents are Thing, global properties, autonomous 

individual, allValuesFrom, someValuesFrom, 

Symmetric Property, Transitive Property, classes as 

instances, disjointWith and complementOf. 

 

 Ontology is a conceptual model and the UML diagrams 

are a rich representation system. UML is used widely and is 

well supported.  Some of the reasons we do not use UML 

for representing ontologies are: 1) UML does not have a 

construct for set complement, 2) set intersection cannot be 

modeled using UML, 3) lack of computer processable 

semantics makes it impossible to use a formal reasoner with 

UML. 

 

3.2 Mapping UML Specifications to the CRO 

 

In our work we use the Cognitive Radio Ontology (CRO) 

developed by the MLM Work Group of the Wireless 

Innovation Forum [14]. In particular, the CRO is used to 

represent the UML Transceiver API in OWL (Web 
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Ontology Language) [7]. The CRO at its base uses DOLCE, 

the Descriptive Ontology for Linguistic And Cognitive 

Engineering [3]. The DOLCE concepts of Endurant, 

Perdurant and Quality are known as Object, Process and 

Attirbute in the CRO. An Object refers to an entity that is 

wholly represented in one snapshot and Process is partially 

represented at any given snapshot of time. Attributes are 

basic entities that can be perceived or measured.  The 

structure of the CRO is based on a principle that the 

attributes cannot exist on their own; instead they are always 

associated with a process or an object.  

 

 The transceiver API has been used as an example API 

that is specified in UML and is then mapped to the CRO. 

The UML diagram for the API specifies classes and 

parameters that can be adjusted or invoked. When we map 

the API to the CRO, the methods are mapped as classes and 

the parameters that are used to describe the class are 

mapped as method.  Figure 3 shows the Transmit Channel 

related interfaces. It shows the relationship between the 

different classes and the methods in UML. The transceiver 

subsystem that is shown is comprised of the Transmitter 

Channel and the Receiver Channel. The Waveform 

Application is a composition of software modules which 

provide a software defined dimension that is essential to the 

radio capability implementation of the system. The 

Transceiver Subsystem and the Waveform Application have 

interfaces between them as shown in Figure 3. They are the 

Transmit Control and the Transmit Data Push classes. 

Transmit Control is the interface used to control the 

Transmit Channel behavior according the Waveform needs. 

The operations included in the Transmit Control are 

createTransmitCycleProfile(), 

configureTramsnitCycleProfile() and setTransmitTime().  

Transmit Data Push is the interface used for transferring 

baseband samples from the Waveform Application to the 

Transceiver Subsystem. The interface includes the operation 

pushBBSamplesTx(). The transmit channel shown here is a 

part of the Transceiver Subsystem and is comprised of four 

methods: createTransmitCycleProfile(), 

configureTransmitCycle(), setTransmitStopTime() and 

pushBBSamples(). When mapping this UML class diagram 

to the CRO, the subsystems are mapped to objects and the 

interfaces are mapped to processes. The relationship 

between the objects and the methods are established using 

properties.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Transmit Chanel Related Interfaces 

  

Figure 3 shows the UML of the Transmit Channel invoked interfaces that have been mapped to the CRO. Here we see that 

we have a package, two interfaces and two classes that need to be mapped in the CRO.  
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   Figure 4: UML mapped to the CRO 

 

Table 2: Transceiver API’s UML to OWL mapping    The transceiver subsystem is mapped as objects and 

processes in the CRO.   In OWL, there is a universal class 

Thing, whose extent is all individuals in a given OWL 

model, and all classes are subclasses of Thing. 

Relationships among classes in OWL are called properties. 

The table below shows the properties that are mapped to 

OWL from the associations in UML for the Transceiver 

API. 

Table 3: Transceiver API’s UML to OWL mapping 

UML Association OWL Property 

Dependency implementsAPI 

Association useAPI 

Consistsof usedBy 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Transmit Channel main composition 

UML Elements OWL Elements 

Waveform Application Thing -> Object -> 

Component -> Waveform 

Application 

Transmit Control Thing -> Process -> API -> 

TransmitControlAPI 

Transmit DataPush Thing -> Process -> API -> 

TransmitDataPushAPI 

Transceiver Subsystem Thing -> Object -> 

Component -> Transceiver 

Transmit Channel Thing -> Object -> 

Component -> Transmit 

Channel 
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3.3 Checking for Consistency  

One of the advantages of using OWL over UML is the 

ability to check for consistency of the specification. For an 

example of consistency checking, first consider Figure 5 

which shows the UML class diagram of the Transmit 

Channel in the Transceiver API and the classes Transmit 

Baseband FIFO and Up conversion Chain. This diagram is 

one of the UML diagrams that were described in the 

Transceiver API specification.  

 

       The solid diamond between the Transmit Baseband 

FIFO and Transmit Channel denotes composition: a strong 

form of aggregation where the life time of the component 

instances is controlled by the aggregate. That is, the parts 

don’t exist on their own (“the whole controls/destroys the 

parts”). When this relationship is mapped to the CRO, a 

cardinality relationship is set where the instances of classes 

Transmit Baseband FIFO and Up-conversion Chain are set 

as sub-components of Transmit Channel and can have one 

and only one of each of the instances. To show how this 

constraint is checked for in OWL, two instances of the class 

Transmit Channel is created, say T1 and T2, and one 

instance of Transmit Baseband FIFO is created, say TBF, as 

shown in Figure 5.  TBF is set as sub component of both T1 

and T2. According to the cardinality restriction (shown in 

Figure 6), the Transmit Baseband FIFO can be the sub 

component of one and only one Transmit Channel.  

 

     There is now an inconsistency identified when we use a 

semantic reasoner.  A semantic reasoner is software that is 

able to infer logical consequences from a set of asserted 

facts. The reasoner used with our Ontology tool (Protégé 4) 

is Pellet. Pellet is a Java OWL 2 reasoner that provides 

reasoning services for OWL ontologies. When the semantic 

reasoner is run for the scenario presented in the preceding 

section, we get an error that is shown in Figure 7. The error 

indicates that this is an inconsistent ontology. The reason for 

inconsistency is shown as the violation of the constraint that 

individual TBF cannot have more than one value for the 

property isSubComp (which violates the cardinality 

restriction).  

 

       The identification of these inconsistencies can be done 

automatically in OWL rather than searching for them 

“manually” in a UML class diagram. Implementation of 

these rules can be easily overlooked in specifications, 

especially when the UML models are complex. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Cardinality Restriction 

 

Similarly, inconsistencies can be present in the dependency 

relationships, inheritance relationships, composedOf 

relationships that exist among the classes, and many others. 

 

 

 

 

 

 

 

 

 

Figure 7: Reasoner Error 

    

Automatic catching of errors by a reasoner can help us 

identify inconsistencies in the specification and thus let us 

avoid unnecessary implementation efforts.   

 

3.4 Querying the CRO 

 

Once the consistency of the API mapping is checked, one 

can then query the specification of the API in the CRO. The 

fact that a specification is consistent does not imply it is 

correct. One of the ways to test for the correctness of a 

specification is to check whether it satisfies various 

requirements, or in other words, whether it has some 

desirable (or undesirable) features. If the specification is 

expressed in a formal language, checking for features can be 

achieved via querying. SPARQL is used as the query 

language for ontologies. It is a query language able to 

retrieve and manipulate data stored in Resource Description 

Framework (RDF) format. One of the advantages of 

SPARQL is that it allows for the writing of unambiguous 

queries. The results are displayed in a table format. 
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     In order to write a query, the basic syntax of SPARQL 

queries needs to be followed. RDF is a data model of graphs 

built out of triples. A triple includes subject, predicate and 

object, where the predicate describes the relationship 

between the subject and the object. The structure of a 

SPARQL query comprises, in order: 1) prefix declarations 

for abbreviating the URI, 2) a dataset definition, stating 

what RDF graph is being queried, 3) a result clause, that 

identifies what information to return from the query, 4) a 

query pattern that specifies what to query and 5) query 

modifiers (that are optional) for rearranging the queries. 

Figure 8 below shows the general structure of a SPARQL 

query. 

 

 

 

 

 

  

 

 

 

 

 

Figure 8: Structure of a SPARQL Query 

              Example queries based on the specification of 

UML for the Transceiver API are 1) a query to return the 

instances that  implement API’s, that are in turn used by the 

Waveform Application object. This is done by calling all 

instances that are part of the Transceiver Subsystem and 

then filter the specific instances that have “implementAPI” 

as a property, and further set a constraint for specific 

instances that are used by the Waveform Application.    2) a 

query to check whether there are APIs that are needed but 

not implemented in the CRO. We do this by calling all 

instances of Process and then get the Methods that use the 

API. We can constrain this by making sure we only show 

the methods that have the property of useAPI and not 

implement API. 

 Figure 9 shows the UML class diagram of the class 

Transmit Channel that implements the two API’s: Transmit 

Control and Transmit Data Push. The UML relationship that 

is shown here is the Transceiver Subsystem (Figure 3) that 

comprises the Transmit Channel and the Receive Channel. 

The Transmit Channel class is mapped to the CRO as a 

Component that is a subclass of Object. The API’s are 

mapped to the CRO as Methods that are subclasses of 

Process. The syntax of the query used to find the 

Components that implementAPI is shown in Figure 10. The 

query is in the form of a triple, where implementAPI acts as 

the predicate between the subject/range C and object 

/domain A.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Transmit Channel 

 

# prefix declarations 

PREFIX foo: 

<http://example.com/resources/> 

 # dataset definition 

FROM ... 

# result clause 

SELECT ... 

# query pattern 

WHERE { 

    ... 

} 

# query modifiers 

ORDER BY ... 
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For the query in Figure 10, the inference engine first needs 

to instantiate the classes, and map the relationship between 

the Transmit Channel, and the Transmit Control and 

Transmit Data Push. The class Component was instantiated 

with C1, C2 and the class API was instantiated with X, Y 

and Z. Each instance of Component (C1 and C2) is then 

mapped to the instances of API (X and Y) using the property 

implementAPI. When we run the query shown in Figure 10, 

C and A act as the subject and object and the result is a table 

with the C and A as columns  and show that C1 implements 

X and C2 implements Y. This is shown in Figure 11. 

 

 

 

Figure 10: SPARQL Query 

  

      This query example is obviously very simple. However, 

large APIs may be very complex and thus many different 

queries can be executed and the results can be assessed by 

the API specifiers. In general, queries can be written to 

check if the dependencies have been implemented correctly 

from the UML to the CRO.  

 
Figure 11. SPARQL Query Result 

 

4. CONCLUSION AND FUTURE WORK 

 

In conclusion, this paper aims to show the advantages of 

having an Ontology based API that is written in OWL in 

addition to a UML specification, since in this way the 

specification can be tested automatically by an OWL 

reasoner. Thus the aim was to show some of the advantages 

of complementing the power of UML with that of OWL. 

Although it was not shown in this paper, the API 

specifications can even be run without the need to 

implement them in a programming language. This can be 

achieved by using a standard OWL API for this purpose (as 

done in our work referenced in this paper). In the future we 

will continue working on the following aspects: 1) 

prototyping the various API’s of the SCA in OWL, 2) 

checking for inconsistencies in not only the associations but 

also the dependencies that exist in UML, 3) implementation 

of the single ontology-based API that will allow for 

mapping any of the existing UML specified APIs to the 

CRO ontology. 
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