

PROTOTYPING SCA TRANSCERIVER APIs USING A GENERIC REASONER API

Durga Suresh (Northeastern University: Boston, MA; suresh.d@husky.neu.edu);
Mieczyslaw Kokar (Northeastern University: Boston, MA; m.kokar@neu.edu); and

Jakub Moskal (VIStology, Inc.: Framingham, MA; jmoskal@vistology.com)

ABSTRACT

API's are developed for different protocol layers, each with

a specific purpose and particular hardware and software

needs. Within the realm of the SDR there are many different

APIs that are associated with transmitters, receivers, specific

purpose applications for military operations or general

research. These APIs are then implemented within a

common SCA architecture, leading to a great advantage of

interoperability among various radios and being platform

independent. The standard practice of developing an API for

an SDR is by first describing it in UML. While UML tools

provide some methods for syntactically constraining the

development of a specification of a system, they don't

support the capability of verifying or enforcing the semantic

constraints. Consequently, the semantic interpretation of the

constraints imposed by an API is done by humans. This

paper discusses the potential uses of languages with formal

semantics (e.g., OWL), in addition to UML, in the

development of the SDR API's. In particular, it investigates

the use of the concepts from the cognitive radio ontology

(CRO) to express a Transceiver API and then using a

reasoner to analyze the API specification, e.g., checking its

logical consistency and querying. This paper proposes that

for the purpose of analyzing the specifications of API’s,

instead of implementing each individual API in a

programming language, the CRO could be used to formalize

the API and then an implementation of a generic, ontology-

bound API be used. The user will thus not have to

implement a new API in a programming language, but

instead use this generic API for analysis and partial testing.

However, the API might need to be eventually

implemented, e.g., in case the generic API does not provide

the sufficient efficiency in terms of computational

complexity.

1. INTRODUCTION

Ontology defines basic terms and the relationships between

these terms [15]. It can be used to share information

between people and machines. It can further help us define

the domain specific knowledge. In the Cognitive Radio

(CR) domain, ontologies were proposed to enable Software

Defined Radio’s (SDR) to achieve interoperability by

exchanging knowledge regarding communication

parameters and protocols [7].

 In current practice API’s are found throughout a system

at all levels where modules or components interface with the

hardware and software of a SDR as shown in Figure 1. The

Transceiver API is one such API that uses CORBA as

middleware. The API’s within the realm of the cognitive

radio and the SCA are specified using UML and are then

implemented on a need basis. The problem with this

scenario is that in order to analyze a new proposed API, one

has to implement it in a programming language. Moreover,

since there are so many different API’s, it is not easy to

analyze the relationships between the different API’s. .

Figure 1: Current Interaction of API to SDR

 The idea proposed in this paper is to complement the

UML capabilities by taking advantage of the existing

generic inference tools for the purpose of analysis of new

API’s. More specifically, the idea is to take the specification

of an API that is described in UML and map it to OWL

(Figure 2). By mapping the API’s UML specification to

OWL, an application can access the system via the ontology

API, instead of via each API individually (as shown in

Figure 1). This will provide the analysis capabilities, e.g.,

(1) API specifications can be checked for consistency and

(2) the API’s can be queried via a standard query language.

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

225

 Figure 2: Ontology Based API Design

 We investigate the feasibility of this approach by

expressing (partially) the transceiver API in OWL and then

using a reasoner to analyze the specification for consistency

and for querying. The ultimate idea is to extend this API

specification mapping to include all API’s so that we do not

use a plethora of API’s but use one ontology in which all the

API’s are expressed. Once the API specification is mapped

and the consistency checked, querying the API specification

can be done using SPARQL.

 Classically the specifications were written using the

Unified Modeling Language (UML). However, other

languages could be used, too, e.g., the Specification and

Description Language (SDL). The SDL standard as

described by the International Telecommunication Union’s

Z.100 [13] document describes the use of SDL as an

unambiguous specification and description of behavior of

telecommunication systems. The use of SDL has been

known in the field of telecommunications for some time

now, including the application to network management,

communication protocols and telecommunication services.

SDL, when used in combination with Message Sequence

Charts (MSC), can be used to test system descriptions.

 The paper is organized as follows. Section 2 is a

literature review of the API’s that exist for the SDR and the

description of the transceiver API. Section 3 discusses the

mapping of the transceiver API UML specification to OWL.

Section 3 also shows how such a specification is checked

for consistency and how it can be queried. Section 4 gives

the conclusion and future work to be done.

2. LITERATURE REVIEW

The development of API’s for the SDR has been an

important charge for the SCA community. The needs and

benefits of an API are twofold: 1) application portability and

2) ease of upgrade/enhancement [4]. The number of API’s

that are used by the Joint Tactical Radio System (JTRS) is at

least twenty, where there is a specific API for each

functionality associated with software radios. The JTRS

infrastructure has 1) primitive APIs that provide messaging

and signaling interfaces and 2) complex APIs that define

radio devices and services. The primitive APIs include

Device IO API, Device Packet API, Device Simple API and

Device Message APIs. The complex APIs include Ethernet

Device API, Serial Port API, Audio Port API, Vocoder

Service API and Modem Hardware Abstraction Layer

(MHAL) API [5]. There are also new API’s developed

every day that add to this list of APIs that are used for

communication, security and protocols. This paper provides

a way to consolidate the different API’s by mapping them to

the CRO. The CRO then is used, involving a reasoner, to

issue queries regarding specific methods from the APIs and

to analyze the API specification.

 The Transceiver API is the result of work of the Wireless

Innovation Forum’s Transceiver Subsystem Interface Task

Force that defines the “Transceiver Facility”. The term

“transceiver” is used to encapsulate the entire set of

hardware and software components within a radio set

necessary to convert a low-power RF signal to digital

baseband on the receiver side, and reciprocally to convert

digital baseband signals to low-power RF on the transmit

side [8]. The transceiver subsystem derives from the

contraction of “transmitter/receiver”; it is a part of a radio

chain that transposes for transmission, baseband into radio

signal and for reception, radio signal to baseband [5]. The

transceiver subsystem is considered a part of the physical

layer and is comprised of the modem and the antenna

subsystem. The rationale for using such a standard based

specification is to increase interoperability between the

Waveform Applications and Transceiver Subsystem [5].

The formal representation of information and

knowledge is becoming a common practice in software

engineering. The paradigms that have emerged to support

this representation are 1) modeling and 2) ontologies. Model

Based Development (MBD) begun with OMG’s UML [10].

Ontologies were developed by the artificial intelligence

community in the W3C’s language OWL [11]. UML, SDL

and MSC’s can be used for modeling and representing

communication services, however recently UML has

dominated this field. An SDL specification can be used to

define system behavior and can be seen as a sequence of

responses to given stimuli [13]. SDL semantics is described

in the Z.100 specification but the semantics is not machine

readable in the sense that there are no formal representation

of the semantics that is interpreted by any inference engine.

Although the SDL semantics presented in the SDL Z.100

document is precise, the semantics is written in natural

language (text) and thus only human-interpretable. To the

best of our knowledge, a generic inference engine does not

exist that would deduce any implicit information from an

SDL specification.

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

226

 This paper talks about mapping UML to OWL and

compares the use of these two languages for analyzing

software defined radio APIs. It is important to compare both

syntax and semantics of the languages. Syntax can be

further classified into abstract syntax and concrete syntax

and semantics can be further classified into semantic

domain and semantic mapping [12]. A language comparison

should take all of these into consideration. The most

important issue in language comparison is subject and

expressiveness.

 As part of an OMG’s effort, ODM has been developed as

a bridge for mapping UML to OWL [2]. In our mapping of

API specifications from UML to OWL, ODM plays a very

significant role. Note, however, that ODM provides only a

partial mapping, not a complete mapping. The main reason

for this partiality is that some of the features of these two

languages are very difficult, if not impossible, to reconcile.

This issue, however, is outside of the scope of this paper.

3. METHODOLOGY

 3.1 Mapping UML to OWL

Unified Modeling Language (UML) is a language that is

used to model application structure, behavior, architecture

and is also used for representing business processes and data

structures [6]. It is a standardized general-purpose modeling

language that is controlled by the OMG. Primarily it is used

to create visual models. UML combines data modeling,

business modeling, component modeling and object

modeling.

Web Ontology Language (OWL) is an expressive

language for representing and sharing ontologies over the

web [9]. It is designed to be used by applications that

process content rather than present information. It facilitates

greater machine interoperability than other languages by

providing vocabulary with formal semantics.

Object Data Metamodel (ODM) is a standard from

Object Management Group (OMG) that supports ontology

development and conceptual modeling. In provides a

framework for ontology creation based on the MOF (Meta

Object Facility) and UML. It thus offers a set of

metamodels and mappings for bridging the worlds of

metamodels and ontologies. ODM defines five metamodels

and two UML profiles and a set of QVT (Query, Verify, and

Transform) mappings; these are used to map between UML

and OWL.

There are many common features between UML

and OWL and thus the ODM incorporates this into the

mappings. Consequently, UML classes are mapped to

OWL classes, UML instances are mapped to OWL

individuals (where the OWL individual is independent of

the class), UML ownedAttribute and binaryAssociation are

mapped to OWL properties, where the properties can be

either local or global. UML subclass and generalizations are

mapped to OWL subClassOf and subProperty. A summary

of the mappings is shown below.

Table 1: UML to OWL mapping

UML Elements OWL Elements

Class, property owned

attribute, type

Class

Instance Individual

ownedAttribute,

binary association

Property

Subclass, generalization subClassOf, subProperty

N-ary association,

association class

Class, Property

Enumeration oneOf

Disjoint, cover disjointWith, unionOf

Multiplicity minCardinality

maxCardinality

Package Ontology

Dependency Reserved name

rdf:Property

The table shown above shows the ODM

specifications of the mapping between UML and OWL. All

of the UML features considered in the scope of ODM have

some satisfactory OWL equivalents. Some UML features

that have no OWL equivalents are navigable, non-

navigable, derived, abstract classifier and classes as

instances. Some OWL features that have no UML

equivalents are Thing, global properties, autonomous

individual, allValuesFrom, someValuesFrom,

Symmetric Property, Transitive Property, classes as

instances, disjointWith and complementOf.

 Ontology is a conceptual model and the UML diagrams

are a rich representation system. UML is used widely and is

well supported. Some of the reasons we do not use UML

for representing ontologies are: 1) UML does not have a

construct for set complement, 2) set intersection cannot be

modeled using UML, 3) lack of computer processable

semantics makes it impossible to use a formal reasoner with

UML.

3.2 Mapping UML Specifications to the CRO

In our work we use the Cognitive Radio Ontology (CRO)

developed by the MLM Work Group of the Wireless

Innovation Forum [14]. In particular, the CRO is used to

represent the UML Transceiver API in OWL (Web

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

227

Ontology Language) [7]. The CRO at its base uses DOLCE,

the Descriptive Ontology for Linguistic And Cognitive

Engineering [3]. The DOLCE concepts of Endurant,

Perdurant and Quality are known as Object, Process and

Attirbute in the CRO. An Object refers to an entity that is

wholly represented in one snapshot and Process is partially

represented at any given snapshot of time. Attributes are

basic entities that can be perceived or measured. The

structure of the CRO is based on a principle that the

attributes cannot exist on their own; instead they are always

associated with a process or an object.

 The transceiver API has been used as an example API

that is specified in UML and is then mapped to the CRO.

The UML diagram for the API specifies classes and

parameters that can be adjusted or invoked. When we map

the API to the CRO, the methods are mapped as classes and

the parameters that are used to describe the class are

mapped as method. Figure 3 shows the Transmit Channel

related interfaces. It shows the relationship between the

different classes and the methods in UML. The transceiver

subsystem that is shown is comprised of the Transmitter

Channel and the Receiver Channel. The Waveform

Application is a composition of software modules which

provide a software defined dimension that is essential to the

radio capability implementation of the system. The

Transceiver Subsystem and the Waveform Application have

interfaces between them as shown in Figure 3. They are the

Transmit Control and the Transmit Data Push classes.

Transmit Control is the interface used to control the

Transmit Channel behavior according the Waveform needs.

The operations included in the Transmit Control are

createTransmitCycleProfile(),

configureTramsnitCycleProfile() and setTransmitTime().

Transmit Data Push is the interface used for transferring

baseband samples from the Waveform Application to the

Transceiver Subsystem. The interface includes the operation

pushBBSamplesTx(). The transmit channel shown here is a

part of the Transceiver Subsystem and is comprised of four

methods: createTransmitCycleProfile(),

configureTransmitCycle(), setTransmitStopTime() and

pushBBSamples(). When mapping this UML class diagram

to the CRO, the subsystems are mapped to objects and the

interfaces are mapped to processes. The relationship

between the objects and the methods are established using

properties.

Figure 3: Transmit Chanel Related Interfaces

Figure 3 shows the UML of the Transmit Channel invoked interfaces that have been mapped to the CRO. Here we see that

we have a package, two interfaces and two classes that need to be mapped in the CRO.

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

228

 Figure 4: UML mapped to the CRO

Table 2: Transceiver API’s UML to OWL mapping The transceiver subsystem is mapped as objects and

processes in the CRO. In OWL, there is a universal class

Thing, whose extent is all individuals in a given OWL

model, and all classes are subclasses of Thing.

Relationships among classes in OWL are called properties.

The table below shows the properties that are mapped to

OWL from the associations in UML for the Transceiver

API.

Table 3: Transceiver API’s UML to OWL mapping

UML Association OWL Property

Dependency implementsAPI

Association useAPI

Consistsof usedBy

Figure 5: Transmit Channel main composition

UML Elements OWL Elements

Waveform Application Thing -> Object ->

Component -> Waveform

Application

Transmit Control Thing -> Process -> API ->

TransmitControlAPI

Transmit DataPush Thing -> Process -> API ->

TransmitDataPushAPI

Transceiver Subsystem Thing -> Object ->

Component -> Transceiver

Transmit Channel Thing -> Object ->

Component -> Transmit

Channel

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

229

3.3 Checking for Consistency

One of the advantages of using OWL over UML is the

ability to check for consistency of the specification. For an

example of consistency checking, first consider Figure 5

which shows the UML class diagram of the Transmit

Channel in the Transceiver API and the classes Transmit

Baseband FIFO and Up conversion Chain. This diagram is

one of the UML diagrams that were described in the

Transceiver API specification.

 The solid diamond between the Transmit Baseband

FIFO and Transmit Channel denotes composition: a strong

form of aggregation where the life time of the component

instances is controlled by the aggregate. That is, the parts

don’t exist on their own (“the whole controls/destroys the

parts”). When this relationship is mapped to the CRO, a

cardinality relationship is set where the instances of classes

Transmit Baseband FIFO and Up-conversion Chain are set

as sub-components of Transmit Channel and can have one

and only one of each of the instances. To show how this

constraint is checked for in OWL, two instances of the class

Transmit Channel is created, say T1 and T2, and one

instance of Transmit Baseband FIFO is created, say TBF, as

shown in Figure 5. TBF is set as sub component of both T1

and T2. According to the cardinality restriction (shown in

Figure 6), the Transmit Baseband FIFO can be the sub

component of one and only one Transmit Channel.

 There is now an inconsistency identified when we use a

semantic reasoner. A semantic reasoner is software that is

able to infer logical consequences from a set of asserted

facts. The reasoner used with our Ontology tool (Protégé 4)

is Pellet. Pellet is a Java OWL 2 reasoner that provides

reasoning services for OWL ontologies. When the semantic

reasoner is run for the scenario presented in the preceding

section, we get an error that is shown in Figure 7. The error

indicates that this is an inconsistent ontology. The reason for

inconsistency is shown as the violation of the constraint that

individual TBF cannot have more than one value for the

property isSubComp (which violates the cardinality

restriction).

 The identification of these inconsistencies can be done

automatically in OWL rather than searching for them

“manually” in a UML class diagram. Implementation of

these rules can be easily overlooked in specifications,

especially when the UML models are complex.

Figure 6: Cardinality Restriction

Similarly, inconsistencies can be present in the dependency

relationships, inheritance relationships, composedOf

relationships that exist among the classes, and many others.

Figure 7: Reasoner Error

Automatic catching of errors by a reasoner can help us

identify inconsistencies in the specification and thus let us

avoid unnecessary implementation efforts.

3.4 Querying the CRO

Once the consistency of the API mapping is checked, one

can then query the specification of the API in the CRO. The

fact that a specification is consistent does not imply it is

correct. One of the ways to test for the correctness of a

specification is to check whether it satisfies various

requirements, or in other words, whether it has some

desirable (or undesirable) features. If the specification is

expressed in a formal language, checking for features can be

achieved via querying. SPARQL is used as the query

language for ontologies. It is a query language able to

retrieve and manipulate data stored in Resource Description

Framework (RDF) format. One of the advantages of

SPARQL is that it allows for the writing of unambiguous

queries. The results are displayed in a table format.

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

230

http://en.wikipedia.org/wiki/Query_language
http://en.wikipedia.org/wiki/Resource_Description_Framework
http://en.wikipedia.org/wiki/Resource_Description_Framework

 In order to write a query, the basic syntax of SPARQL

queries needs to be followed. RDF is a data model of graphs

built out of triples. A triple includes subject, predicate and

object, where the predicate describes the relationship

between the subject and the object. The structure of a

SPARQL query comprises, in order: 1) prefix declarations

for abbreviating the URI, 2) a dataset definition, stating

what RDF graph is being queried, 3) a result clause, that

identifies what information to return from the query, 4) a

query pattern that specifies what to query and 5) query

modifiers (that are optional) for rearranging the queries.

Figure 8 below shows the general structure of a SPARQL

query.

Figure 8: Structure of a SPARQL Query

 Example queries based on the specification of

UML for the Transceiver API are 1) a query to return the

instances that implement API’s, that are in turn used by the

Waveform Application object. This is done by calling all

instances that are part of the Transceiver Subsystem and

then filter the specific instances that have “implementAPI”

as a property, and further set a constraint for specific

instances that are used by the Waveform Application. 2) a

query to check whether there are APIs that are needed but

not implemented in the CRO. We do this by calling all

instances of Process and then get the Methods that use the

API. We can constrain this by making sure we only show

the methods that have the property of useAPI and not

implement API.

 Figure 9 shows the UML class diagram of the class

Transmit Channel that implements the two API’s: Transmit

Control and Transmit Data Push. The UML relationship that

is shown here is the Transceiver Subsystem (Figure 3) that

comprises the Transmit Channel and the Receive Channel.

The Transmit Channel class is mapped to the CRO as a

Component that is a subclass of Object. The API’s are

mapped to the CRO as Methods that are subclasses of

Process. The syntax of the query used to find the

Components that implementAPI is shown in Figure 10. The

query is in the form of a triple, where implementAPI acts as

the predicate between the subject/range C and object

/domain A.

Figure 9: Transmit Channel

prefix declarations

PREFIX foo:

<http://example.com/resources/>

 # dataset definition

FROM ...

result clause

SELECT ...

query pattern

WHERE {

 ...

}

query modifiers

ORDER BY ...

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

231

For the query in Figure 10, the inference engine first needs

to instantiate the classes, and map the relationship between

the Transmit Channel, and the Transmit Control and

Transmit Data Push. The class Component was instantiated

with C1, C2 and the class API was instantiated with X, Y

and Z. Each instance of Component (C1 and C2) is then

mapped to the instances of API (X and Y) using the property

implementAPI. When we run the query shown in Figure 10,

C and A act as the subject and object and the result is a table

with the C and A as columns and show that C1 implements

X and C2 implements Y. This is shown in Figure 11.

Figure 10: SPARQL Query

 This query example is obviously very simple. However,

large APIs may be very complex and thus many different

queries can be executed and the results can be assessed by

the API specifiers. In general, queries can be written to

check if the dependencies have been implemented correctly

from the UML to the CRO.

Figure 11. SPARQL Query Result

4. CONCLUSION AND FUTURE WORK

In conclusion, this paper aims to show the advantages of

having an Ontology based API that is written in OWL in

addition to a UML specification, since in this way the

specification can be tested automatically by an OWL

reasoner. Thus the aim was to show some of the advantages

of complementing the power of UML with that of OWL.

Although it was not shown in this paper, the API

specifications can even be run without the need to

implement them in a programming language. This can be

achieved by using a standard OWL API for this purpose (as

done in our work referenced in this paper). In the future we

will continue working on the following aspects: 1)

prototyping the various API’s of the SCA in OWL, 2)

checking for inconsistencies in not only the associations but

also the dependencies that exist in UML, 3) implementation

of the single ontology-based API that will allow for

mapping any of the existing UML specified APIs to the

CRO ontology.

 5. REFERENCES.

[1] C.Magsombol, C. Jimenez, D.R. Stephens, Joint

Tachtical Radio System - Application Program
Interfaces. Joint Program Technical Report

 Executive Ofice, Joint Tachtical Radio System
Standards, San Diego, CA.

[2] R.Studer, V.R Benjamin, D.Fensel, "Knowledge
Engineering: Principles and Methods", Data and
Knowledge Engineering

 pp. 161-197, 198
[3] C. Masolo, S. Borgo, A. Gangemi, "DOLCE: a

Descriptive Ontology for Linguistics and Cognitive
Engineering:., Institute of Cognitive Sciences and
Technology, Italian National Research Council.

[4] "API Position Paper" Software Defined Radio Forum,
System Interface Working Group Document Number:
SDRF -03-A-0005-V0.0

 July 19th, 2003
[5] "Transceiver API Specification" Software define radio

Forum, Document Number: SDRF-08-S-008-V1.0.0
January 28th, 2009

[6] Object Management Group, Object Data Metamodel
(ODM), version 1.0, OMG Document Number:
formal/2009-05-01 Standard document URL:
http://www.omg.org/spec/ODM/1.0

[7] S. Li, M. M. Kokar, D. Brady, “Developing an

 Ontology for the Cognitive Radio: Issues and

 Decisions”, SDR Forum Technical Conference, Dec.

 2009.

[8] E. Nicollet, L. Pucker, Standardizing Transceiver APIs

for Software Defined and Cognitive Radio. RF Design

Magazine, February 2008.

[9] G. Hillariet, ATL Use Case - ODM Implementation

 (Bridging UML and OWL). SIDo Group,February 2007.

[10] Object Management Group, "UML 2.0

 Superstructure Revised Final Adopted Specification,"

 OMG Specification, Oct. 2004.

[11] M.K. Smith, C. Welty, and D.L. McGuinness, eds.,

 “OWL Web Ontology Language Guide”, World Wide

 Web Consortium (W3C) recommendation, Feb. 2004,

 53. http://www.w3.org/TR/2004/ REC-owl-guide-

 20040210/.

[12] D. Harel and B. Rumpe, “Modeling Languages:

 Syntax, Semantics and All That Stuff - Part I: The

 Basic Stuff”, tech. report MCS00-16, Faculty of

 Mathematics and Computer Science, The Weizmann

 Inst. of Science, Israel, 2000.

[13] Specification and Description Language (SDL),

 International Telecommunication Union, ITU – T,

 Z.100 (11/89)

[14] WIF Forum MLM Working Group, “Description of

 Cognitive Radio Ontology v.1.0”, 2010.

[15] T. R. Gruber. A translation approach to portable

 ontologies. Knowledge Acquisition, 5(2):199-220,

 1993.

SELECT ?C ?A

WHERE { ?C :implementAPI ?A}

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

232

